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Abstract

We explore the influence of framing on decision-making, where some products are

framed (e.g., displayed, recommended, endorsed, or labeled). We introduce a novel

choice function that captures observed variations in framed alternatives. Build-

ing on this, we conduct a comprehensive revealed preference analysis, employing

the concept of frame-dependent utility using both deterministic and probabilistic

data. We demonstrate that simple and intuitive behavioral principles characterize

our frame-dependent random utility model (FRUM), which offers testable condi-

tions even with limited data. Finally, we introduce a parametric model to increase

the tractability of FRUM. We also discuss how to recover the choice types in our

framework.
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1 Introduction

Framing is a powerful marketing tool that shapes consumer choices by altering how ex-

isting or additional information about a product is conveyed. Some framing techniques re-

frame the same information in different terms—for instance, describing a product as “25%

fat” versus “75% lean” directs consumer attention to distinct aspects, subtly influencing
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evaluation without changing the product itself. Other frames, such as endorsements, rec-

ommendation displays, or “best-seller” banners, offer subjective cues that consumers may

interpret as relevant to their preferences, thereby enhancing perceived value. In this pa-

per, we focus on this latter form of framing. However, our findings are broadly applicable

to other types of framing as well.

Marketers and practitioners employ framing techniques to shape consumer percep-

tions and behaviors, ultimately aiming to enhance sales, foster brand loyalty, and capture

greater market share. These include but are not limited to traditional window displays (S.

Sen et al., 2002), virtual presentations (González et al., 2021), recommendation signage

(bestsellers or editor’s picks) (Goodman et al., 2013), platform endorsements (Amazon’s

Choice) (Bairathi et al., 2024), and quantified claims (Yu and Urminsky, 2023). The

evidence for these simple modifications altering choice behavior is conclusive and indis-

putable across a wide spectrum of economic activities (e.g., for the labor market, Horton

(2017); for hospitality and tourism, Litvin et al. (2008); for music streaming services,

Adomavicius et al. (2018) and Li et al. (2007); for e-commerce (of commodities or goods),

Goodman et al. (2013), Häubl and Trifts (2000), Rowley (2000), Senecal and Nantel

(2004), and Vijayasarathy and Jones (2000)).

Framing is designed to influence consumer decisions, aiming to nudge individuals to-

wards particular choices or behaviors. However, these effects are not uniform across all

consumers; different individuals respond to marketing stimuli in unique ways due to their

preferences, attention, or other factors. Moreover, these strategies can lead rational con-

sumers to adjust their behavior, making it difficult to discern whether observed subsequent

behaviors are entirely rational in the presence of framing.

In real life, consumer data is typically available in aggregate form rather than as

individual data. This poses additional challenges for analyzing the impact of marketing

strategies on decision-making at the individual level. While aggregate data can reveal

overall trends—such as increased purchases after a promotion—it lacks the granularity

to show how each consumer was specifically influenced. For instance, we might see a

spike in sales but cannot determine whether certain groups were more influenced by

these strategies. Without individual-level data, identifying who was most affected by

marketing tactics or how they adjusted their decision-making process in response becomes

highly challenging. Therefore, while aggregate data can indicate the overall impact of a
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marketing campaign, it is not clear whether it can provide insight into the extent or

direction of influence on individual consumers.

An important question arises: Is it possible to infer individual behavior from aggre-

gate data when marketing strategies are in play? In theory, aggregate data represents a

collection of choices made by individuals, each with their preferences and susceptibilities

to influence. Distinguishing between influenced and uninfluenced consumers remains dif-

ficult. In this paper, we aim to reveal whether (i) framing affects consumers’ evaluations,

and (ii) this influence can align with the utility maximization paradigm.

To tackle the question, we first extend traditional rational choice theory in determin-

istic domain by introducing the concept of frame-dependent utility, which posits that the

framing of an option can enhance its perceived utility. To elucidate this concept, consider

two scenarios: (i) x is chosen when y is presented as the framed option, and (ii) z is

chosen when nothing is framed. These choices challenge the frame-dependent utility hy-

pothesis since, in the first scenario, the non-framed x appears to outperform all unframed

alternatives, contradicting the selection made in the second scenario. Therefore, in this

paper, we aim to uncover the conditions under which choices influenced by frames can be

seen as the result of utility maximization. Our investigation spans both deterministic and

stochastic domains. We introduce behavioral postulates that rely solely on variations in

the framed set, providing a pragmatic approach for testing the rationality hypothesis.

In the next section, we introduce our framework, presenting a model within a determin-

istic setting that we name the Frame-Dependent Utility Model (FUM). We demonstrate

that FUM can be succinctly characterized by a behavioral postulate called Independence

of Irrelevant Framed Alternatives (IIFA). IIFA states that removing the frame from an

alternative does not affect the choice if the alternative was not initially chosen. In the

above example, y was framed in the first scenario but not in the second. Hence, IIFA

implies that the choice must remain the same. This principle parallels (yet different from)

the axiom of Independence of Irrelevant Alternatives (IIA), a fundamental principle in

classical choice theory that posits that choices should remain unaffected by non-selected

options.1 IIFA is a necessary and sufficient condition for utility maximization in the

presence of framing.

Once we establish the result in the deterministic domain, we are ready to tackle

1We should note that the standard IIA does not capture this since the chosen option here is the
non-framed version of itself; for a detailed explanation, see Section 2.
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whether we can infer individual behavior from aggregate data. In Section 3, we study the

implications of frame-dependent utility on aggregate behavior as observed through prob-

abilistic choice data. Our primary question concerns identifying the impact of individual

preference maximization on overall market behavior. Specifically, how do we determine if

aggregate behavior aligns with the hypothesis that it arises from a group of preference-

maximizing consumers? To illustrate, consider a scenario where product a is selected 70%

of the time when nothing is framed, 45% when either product b or c is framed, and only

10% when both b and c are framed. Note that the market share of a decreases as the

number of framed options increases. It seems like a case where utility maximizers are

more drawn to the framed options than the unframed option a. Hence, it is tempting to

conclude that this example can be rationalized by utility maximization with a heteroge-

neous population. However, we will demonstrate that such a conjecture is incorrect, i.e.,

these data cannot be represented as the aggregate behavior of preference-maximizing con-

sumers. This example illustrates that identifying the implications of aggregate behavior

among utility-maximizing individuals is not a straightforward task.

We first define the Frame-dependent Random Utility Model (FRUM). Similar to the

classic Random Utility Model (RUM), FRUM assumes that each agent makes determin-

istic choices based on an underlying (frame-dependent) utility. The foundational RUM’s

empirical validity has been explored by Falmagne (1978), Barbera and Pattanaik (1986),

and McFadden and Richter (1990), who demonstrate that the non-negativity of the Block-

Marshak polynomials (BM) serves as a criterion for the choice data’s consistency with

RUM. In our environment, the classical BM can be defined using framed-set variation for

framed alternatives. However, it is silent on how non-framed alternatives should behave

(see the above example). Therefore, we introduce new conditions for non-framed alter-

natives and show that they characterize FRUM. Our conditions delineate the behavioral

content of heterogeneous frame-dependent utility maximizers.

Lastly, we investigate frame-dependent utility in a probabilistic environment using

a parametric model, which we call the Frame-dependent Utility Luce Model (F-Luce).

The model has a finite set of alternative-specific parameters. We show that two simple

behavioral postulates can fully characterize this model. The first postulate, called Strong

Luce-IIA, mimics the famous Luce-IIA (Luce, 1959) in our framework. The axiom requires

that as long as the status of two alternatives does not change across two frames, the choice
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ratio must remain constant. Indeed, Luce-IIA, when adapted to this framework, is implied

by Strong Luce-IIA, since the choice ratio between framed items remains constant. The

second postulate is F-Regularity, which states that a non-framed alternative must be

chosen more often as the framed set becomes smaller. Our characterization results do not

require knowledge of the full data. We show that if the choice data include all framed sets

of size two or fewer, the characterization holds. In addition, we can uniquely pin down

the utility weights up to a scaling factor.

The analysis of the framing effect from a choice-theoretic perspective can be traced

back to the work of Salant and Rubinstein (2008), who proposed a comprehensive frame-

work for studying the framing effect. Building on this foundation, more recently, Galperti

and Cerigioni (2023) examined how the sequence in which attribute information about

alternatives is presented can influence decision-making. Furthermore, Goldin and Reck

(2020) narrowed their focus to two alternatives, employing statistical methods and as-

sumptions to facilitate identification. On the other hand, scholars have also been drawn

to explore different classes of random utility models (e.g. Apesteguia and Ballester, 2023;

Apesteguia et al., 2017; Frick et al., 2019; Gul and Pesendorfer, 2006; Manzini and

Mariotti, 2018; Turansick, 2024). To the best of our knowledge, our paper is the first

choice-theoretic work to address the issue of frame-dependent random utility. Meanwhile,

several different strands of research have augmented or departed from choice-set variation

in the standard model. For example, some studies have employed list variation to examine

choices (Guney, 2014; Ishii et al., 2021) and approval rates (Manzini et al., 2021). Dar-

danoni et al. (2023) proposed using mixture choice data and Azrieli and Rehbeck (2022)

studied marginal frequencies of choice and availability but not standard choice probabil-

ities in each menu. Cheung and Masatlioglu (2024) and Ke et al. (2024) investigated

how recommendations can affect people’s choices and beliefs, and Natenzon (2019) and

Guney et al. (2018) explored the impact of unselectable “phantom” options on decision-

making. These lines of research, in a spirit similar to our model, enrich the standard

choice environment and deepen our understanding of human behavior.
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2 Framework and Micro Foundation

Let X be a finite set of alternatives (e.g., all documentaries available on Netflix or all

65-inch Smart TVs sold on Amazon). We let F ⊆ X denote the set of framed alternatives.

When confusion is unlikely, we also call F the frame. In this framework, a decision

problem describes not only which alternatives are available, denoted by S, but also which

alternatives are framed, denoted by F . Therefore, (F, S) constitutes a decision problem

where F, S ⊆ X and S ̸= ∅. One can define a general choice function c such that

c(F, S) ∈ S, where S represents the set of feasible alternatives and F represents the framed

alternatives. There are two types of variation in the general model: Frame variation and

feasible set variation. In other words, this framework is more “data-hungry” than the

standard choice model since the analyst must observe choices from all decision problems.

In this paper, we address the challenge of extensive data requirements by assuming

that the set of available alternatives remains fixed, X. Consequently, our model operates

without variation in the availability of alternatives, reflecting environments like Amazon,

where product availability exhibits minimal or no fluctuation. Under this assumption,

any subset of X, denoted as F , can represent a decision problem in which all alterna-

tives within F are framed and the rest are not framed. Importantly, the empty set also

constitutes a valid decision problem, representing a scenario where no alternatives are

framed.

While frames can influence choices, they do not constrain them. To capture this, we

define a choice rule c as a function of the frame, F , but allow for c(F ) to be outside of

F . Hence, the only restriction we impose is c(F ) ∈ X. Notice that our choice function

differs from the one used in the choice theory literature, where c(F ) is always in F . This

distinction will be important when we introduce behavioral properties. We denote the

classical choice function by d, where d(S) ∈ S for all S ⊂ X, and S represents the set of

available options. Additionally, we allow c to be observable only for some frames but not

others. This assumption aims to capture real-world environments in which the collection

of the frame is just a fraction of the entire product space. Let D ⊆ 2X denote all possible

frames for which we have data. For instance, D can include all frames of size 1. The

following definition captures the choice rule under this framework. Depending on the

results we provide in this paper, we highlight the necessary requirements in the domain.

Definition 1. A deterministic choice rule c on D is a mapping from D to X such that
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c(F ) ∈ X for all F ∈ D.

Consider that if a decision-maker (DM) consistently acts in alignment with a gen-

uine underlying preference that is frame-independent, then framing should not influence

decisions. This implies that the choice function c(F ) remains constant, irrespective of

framing (c(F ) = c(F ′) for all F, F ′ ∈ D). However, contrary to this assumption, existing

evidence robustly demonstrates that framing significantly impacts decision-making. In

this context, we introduce a model of frame-dependent utility maximization. This model

adheres to the foundational principles of rational choice, where each option is assigned a

subjective value, and the DM opts for the option with the highest value.

Framing influences decisions solely by enhancing the perceived value of the framed

option. Consequently, framing positively alters the option’s relative position within the

DM’s preferences. This concept aligns with traditional theories that negate the presence

of “context effects,” asserting that an option’s valuation is solely dependent on its framed

status, without being influenced by other framed options.

To formalize this, suppose the DM considers two functions, u and v, mapping from

a set X to the real numbers R. For a framed product x (where x ∈ F ), its utility is

perceived as the sum u(x) + v(x); if not framed, the utility remains u(x). The DM’s goal

is to select the option that maximizes this utility. The model assumes v(x) is non-negative

to represent positive framing effects. The choice function under this framework, denoted

as c(u,v), is written as:

c(u,v)(F ) = argmax
x∈X

UF (x) where UF (y) =

u(y) + v(y) if y ∈ F

u(y) if y /∈ F

(FUM)

where v(x) ≥ 0.2 We say a choice rule c has a Frame-dependent Utility Model (FUM)

representation on D if there exists (u, v) with v ≥ 0 such that c = c(u,v). Note that

framing does not affect utilities in an arbitrary way. First of all, as long as the status of

the option is the same under F and F ′, its utility remains the same, i.e., if x /∈ F ∪ F ′ or

x ∈ F ∩ F ′ then UF (x) = UF ′(x). Moreover, the relative ranking of two alternatives does

not change as long as they are not framed, i.e., if x, y /∈ F ∪ F ′ then UF (x) > UF (y) if

and only if UF ′(x) > UF ′(y). The same applies if both of them are framed. CFUM denotes

2Since our domain is finite and choices are unique, we assume UF is an injective function.
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the collection of the choice functions that have a FUM representation.

Finally, we illustrate the distinctions between classical choice functions (d) and frame-

dependent choice functions (c) within a straightforward environment X = {a, b} (see

Table 1). This comparison is crucial for understanding the subsequent analysis and es-

tablishing a connection with their classical counterparts. A classical choice function is

defined only on the non-empty subsets of X. Since the chosen element must belong to

the decision problem, the only non-trivial choice problem is {a, b}. In this case, there are

exactly two such functions, as shown in the first two columns of Table 1. On the other

hand, our choice function is defined on any subsets of X. Moreover, all choice problems

are non-trivial; hence, there are 16 different choice functions in our framework. Even in

this simple environment, frame-dependent choice functions and classical choice functions

differ significantly. The next section introduces conditions to restrict the possible choice

functions in order to identify CFUM.

2.1 Behavioral Characterization

In this section, we explore the behavioral implications of the model in a deterministic

environment. The first behavioral postulate is the key axiom in this environment, which

states that removing some of the unchosen alternatives from the frame does not influence

the final choice. Note that it shares a similar flavor to the famous IIA axiom (i.e.,

Independence of Irrelevant Alternatives) in the classical choice theory literature.3 We call

this the Independence of Irrelevant Framed Alternatives, abbreviated as IIFA.

IIFA. If c(F ) /∈ F \ F ′ and F ′ ⊆ F , then c(F ) = c(F ′).

Since this axiom looks similar to the standard IIA, one might think they are equivalent.

While the standard IIA applies to classical choice functions, in which the winner always

belongs to the choice set, our postulate applies to new choice objects, in which the winner

can be a framed or non-framed item. This seemingly small distinction has important

implications. In fact, if we include “c(F ) belonging to F ′” in the premise of IIFA, then

IIFA becomes the standard IIA, which is stated below as IIFA(1). However, IIFA(1) is

strictly weaker than IIFA (see Table 1).

3This property is also known as Sen’s α axiom (A. K. Sen, 1971), Postulate 4 of Chernoff (1954), C3
of Arrow (1959), the Heritage property of Aı̆zerman and Aleskerov (1995), or the Heredity property of
Aleskerov et al. (2007).
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IIFA(1). If c(F ) ∈ F ′ and F ′ ⊆ F , then c(F ) = c(F ′).

In other words, seemingly similar axioms have distinct implications in our framework.

Hence, the existing results in the literature on the standard framework might not be

valid in our framework. Since IIFA(1) is weaker than IIFA, we would like to state the

counterpart of IIFA(1). To this end, we include “c(F ) is not in F” in the premise and

call it IIFA(2). It states that the winner outside of the frame will persist when fewer

alternatives are framed.

IIFA(2). If c(F ) /∈ F and F ′ ⊆ F , then c(F ) = c(F ′).

It is easy to see that the combination of IIFA(1) and IIFA(2) is equivalent to IIFA.

Notice that the model satisfies IIFA. To see this, first consider IIFA(1), so c(F ) ∈ F ′.

The model states that c(F ) is evaluated according to the framed version, and it must

be better than all other framed and non-framed alternatives. Therefore, the evaluated

ranking of c(F ) remains the best alternative even if some alternatives are “downgraded.”

Next, consider the second postulate, IIFA(2), so c(F ) /∈ F . The model states that the

non-framed item c(F ) is already better than the framed items in F and other non-framed

items. Hence, the non-evaluated version of c(F ) is still superior to other alternatives when

some other alternatives are not evaluated anymore.

Table 1 helps to understand the implications of IIFA(1) and IIFA(2) for both classical

choice functions (d) and frame-dependent choice functions (c). Since all classical choice

functions (d1 and d2) satisfy IIFA(1), Hence, the classical utility maximization has no

empirical content for two alternatives.4 In contrast, IIFA(1) and IIFA(2) have empirical

content even in this simple environment. Notably, c1 satisfies both IIFA(1) and IIFA(2).

These axioms are independent, as demonstrated by c4, which satisfies only IIFA(1), and

c5, which satisfies only IIFA(2). Finally, c6 does not satisfy either of these axioms (IIFA(1)

is violated since c6({a, b}) ̸= c6({a}), and IIFA(2) is violated since c6({a}) ̸= c6(∅)).5

Our next result demonstrates that the full behavioral implications of FRUM are en-

capsulated by IIFA(1) and IIFA(2). Hence, c1−c3 are the only choice functions in Table 1

that have FRUM representations.

4IIFA(2) is vacuously true for the classical choice functions.
5Table 1 only includes frame-dependent choice functions with c({a, b}) = a. Hence there are eight

more choice functions with c({a, b}) = b (16 in total). 6 out of 16 frame-dependent choice functions
satisfy both IIFA(1) and IIFA(2).
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d1 d2 c1 c2 c3 c4 c5 c6 c7 c8

{a, b} a b a a a a a a a a
{a} a a a a a a b b b b
{b} b b a b b a b a a b
∅ - - a a b b b a b a

IIFA(1) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

IIFA(2) - - ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

Table 1. Classical Choice Functions (d) versus Frame-Dependent Choice Functions (c). di’s are
only defined on the non-empty subsets and di(S) must belong to S, e.g., d1({a}) = d2({a}) = a,
hence the only non-trivial choice is made when the decision problem is {a, b}. On the other
hand, ci(F ) could be outside of F , such as c2({b}) = a. c1-c3 satisfy both IIFA(1) and IIFA(2).
While c4 only satisfies IIFA(1), c5 only satisfies IIFA(2). Finally, c6-c8 do not satisfy any of
these axioms.

Theorem 1 (Characterization). Let D includes all frames with |F |≤ 3. Then, c has an

FUM representation if and only if c satisfies IIFA.

We now discuss the identification and uniqueness properties of our model. Note that

our domain is finite; hence, we can only attain ordinal uniqueness. Assume that (u1, v1)

and (u2, v2) represent the same choice rule. Notice that when there is no framing, alterna-

tives are evaluated according to ui. Therefore, the best alternative in X according to both

u1 and u2 must be the same. Additionally, if x is different from c(∅) and is chosen when

it is framed, its evaluated utility ui + vi is revealed to be higher than the best alternative

in X according to ui (revealed preference). Moreover, if two different framed alternatives

are chosen on two occasions, one can uniquely determine their ranking in ui + vi. Lastly,

the lower contour set of the best alternative in X must be the same.

Proposition 1 (Uniqueness). Let (u1, v1) and (u2, v2) be two FUM representations of

the same choice data c. Then, for x, y ∈ X

i) argmaxx∈X u1(x) = argmaxx∈X u2(x) := a,

ii) u1(a) > (u1 + v1)(x) if and only if u2(a) > (u2 + v2)(x), and

iii) (u1 + v1)(x) > (u1 + v1)(y) > u1(a) if and only if (u2 + v2)(x) > (u2 + v2)(y) > u2(a).

This proposition also states that without framing, the choice is unique, and the ordinal

rankings are uniquely identified as long as it matters for the choice, i.e., c(u1,v1)(F ) =

c(u2,v2)(F ) for all F .
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3 Random Utility

In the preceding section, we presented the groundwork for our model by illustrating

how framing influences deterministic choices. This section advances the discussion to

encompass probabilistic choices. Probabilistic choice data can be interpreted in two pri-

mary ways. The first, an interpersonal perspective, suggests that variability in choice data

stems from the heterogeneity of individual types within a group, with only their collective

behavior observable to an external observer. The second, an intrapersonal perspective,

reflects the variability in the choices of a single individual across different contexts. Our

model accommodates both interpretations, offering insights into intrapersonal and inter-

personal probabilistic choices.

Probabilistic choices have been extensively analyzed within the traditional choice-set

variation framework. However, as we move on to studying frame-set variation, the usual

probabilistic choice function will fall short of capturing the essence of choosing outside of

the frame F . To address this limitation and integrate the concept of variation in framed

sets, we expand the definition of a probabilistic choice rule, paralleling the approach taken

in our analysis of deterministic choices.

Definition 2. A choice rule ρ is a mapping from X×D to [0, 1] such that
∑

x∈X ρ(x, F ) =

1.

As in deterministic choice, ρ differs from the classical probabilistic choice π. Formally,

π is also a mapping from X × D to [0, 1] such that
∑

x∈X ρ(x, F ) = 1. Yet, it is also

assumed π(x, F ) = 0 for x /∈ F , whereas ρ(x, F ) could be strictly positive.

In this section, we investigate the behavioral implications of frame-dependent ran-

dom utility. Similar to the standard Random Utility Model (RUM), it is assumed that

the observed data are generated by a group of diverse individuals making deterministic

choices. Before detailing our model, we revisit the classical random utility model. RUM

accounts for a “rational” heterogeneous population, with each entity or type within this

population maximizing its utility. Let µ represent a probability distribution over the set

of rational choice functions, denoted by CR.6 This probability distribution, µ, constitutes

a probabilistic choice function πµ, which is defined as follows:

πµ(x, S) = µ({d ∈ CR| x = d(S)}) (RUM)

6Formally, CR = {d|d(S) = argmaxx∈S u(x) for some (injective) utility function u for all S ∈ D.}
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The probability of x being chosen from S is the frequency of those types who choose

x from S. We say that a probabilistic choice function π has a Random Utility Model

(RUM) representation if there exists µ such that π = πµ.

Therefore, to study frame-dependent random utility, we assume instead that each

decision-maker in the population belongs to our deterministic model (FUM). Let µ be a

probability distribution over CFUM. The probability distribution µ constitutes a proba-

bilistic choice function ρµ such that

ρµ(x, F ) = µ({c ∈ CFUM| x = c(F )}) (FRUM)

for every F ∈ D. We say that a probabilistic choice function, ρ, has a Frame-Dependent

Random Utility Model (FRUM) representation if there exists µ on CFUM such that ρ = ρµ.

FRUM tests the hypothesis of a group of utility-maximizing individuals affected by frames.

In FRUM, the only departure from RUM we introduce here is that frame can change the

ranking of framed items. Note that FRUM has a much richer type space compared to

RUM.7

3.1 RUM versus F-RUM

In this section, we compare our model with the classical random utility model. Figure 1

illustrates the relationship between F-RUM and RUM on the Marschak-Machina triangle

in a domain of three alternatives, X = {x, y, z}. This is the simplest environment we can

utilize to study the differences and similarities between these models.

The Marschak-Machina triangle is a tool used in decision theory to represent stochas-

tic choices. Each corner represents a different alternative. In RUM, there are only four

non-trivial choice problems describing the available alternatives. For example, π(·, {x, y})

assigns zero choice probability to z since z is not available. In F-RUM, there are eight

non-trivial observations (= 2|X|) describing framed alternatives. For example, ρ(·, {x, y})

assigns a positive choice probability to all alternatives, including the non-framed alterna-

tive z.

Figure 1 depicts RUM and F-RUM. In each figure, choosing x with probability one is

7For |X|= n, RUM has n! (= |CR|) choice types, while FRUM has
∑n

i=1 i!
(
n
i

)
i(= |CFUM|) choice types.

For n = [2, 3, 4, 5, 6], choice types in RUM and FRUM are [2, 6, 24, 120, 720] and [6, 33, 196, 1305, 9786],
respectively.
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Figure 1. RUM versus F-RUM: This figure illustrates the differences and similarities between
classical RUM and F-RUM for three alternatives, X = {x, y, z}. The left figure illustrates RUM.
The red triangle identifies all possibilities for π(·, X) consistent with RUM, given three binary
choices depicted on three edges of the simplex. The right figure illustrates F-RUM. Here, there
are eight non-trivial observations describing framed alternatives. The right figure illustrates all
possible choices for F = ∅ and F = X given choices for binary and singleton frames. The red
irregular hexagon identifies all possibilities for ρ(·, X) for F-RUM. Similarly, the blue triangle
depicts all possibilities for ρ(·, ∅) for F-RUM.

represented by the left corner of the triangle. In RUM, stochastic choices for binary sets

are fixed and denoted by black dots on the edges of the triangle. The distance between the

corner x and the black point labeled π(xy) represents π(y, {x, y}), the choice probability

of y when x and y are the only alternatives. Similarly, the distance between the corner y

and π(xy) represents π(x, {x, y}) in the same scenario. The points inside the Marschak-

Machina triangle capture choice probabilities from the choice set X. The upside-down

red triangle identifies all possibilities for π(·, X) for RUM given these binary choices. This

figure illustrates both the predictive and explanatory power of RUM: If π(·, X) lies outside

this triangle, the data cannot be explained by the random taste and utility maximization

hypothesis.

The figure on the right panel shows the predictions for F-RUM given choices from

binary and singleton frames. F-RUM restricts choices under both F = ∅ and F = X.

The red irregular hexagon identifies all possibilities for ρ(·, X) consistent with F-RUM.

Thus, this area captures the explanatory power of F-RUM given these choices under

singleton and binary frames. F-RUM also predicts choices under F = ∅. The blue

triangle identifies all possibilities for ρ(·, ∅) consistent with F-RUM. If either ρ(·, X) lies

outside the red hexagon or ρ(·, ∅) lies outside the blue triangle, then the data cannot be
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explained by the utility maximization hypothesis with preferences influenced by frames.

Note that the predictions of F-RUM are distinct from those of RUM.

3.2 Hasse Diagram

Within the RUM framework, Falmagne (1978) addressed the question of whether in-

dividual frame-dependent utility maximization has any implications for aggregate data.

For the characterization of RUM, Falmagne (1978) utilized a well-known concept in the

literature: The Block-Marschak polynomials, named after Block and Marschak (1959)’s

seminal work on RUM. It has been shown that probabilistic choice data have a RUM rep-

resentation if and only if their Block-Marschak polynomials are non-negative. Block and

Marschak (1959) originally established the necessity, and Falmagne (1978) demonstrated

that the non-negativity of the polynomials is also sufficient.

In our framework, we also utilize Block-Marschak (BM) polynomials. Let qρ(a, F )

denote the BM polynomials i.e. for any a ∈ F ,

qρ(a, F ) :=
∑
B⊇F

(−1)|B\F |ρ(a,B)

The Block-Marschak polynomials are defined with respect to the choice data ρ. Through-

out the paper, we mostly skip denoting ρ and write q(a, F ) unless specified otherwise. qρ

is defined for each framed alternative. We define auxiliary BM conditions for non-framed

alternatives. As we shall see, they play an important role in FRUM. Formally, for a /∈ F ,

yρ(a, F ) :=
∑

a/∈B⊇F

(−1)|B\F |ρ(a,B)

Again, we skip denoting ρ and write y(a, F ) unless specified otherwise.

Figure 2 generalizes the classical network representation (a directed graph) of partial

order sets for our purposes. Each node represents a subset of the grand set of alternatives.

Each black solid line indicates a subset relationship between subsets. The Block-Marschak

polynomials can be considered as the amount of flow on each black line. In the original

network of this Hasse diagram, the outdegree of each node (i.e., a subset) are equal to the

number of alternatives it contains, and the inflow and outflow of black lines are always
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Figure 2. The new Hasse Diagram for FRUM consists of black solid lines representing the
Block-Marschak polynomials (the old Hasse Diagram for RUM) and red dashed lines (leakages)
representing the auxiliary Block-Marschak polynomials. Each colored path represents a specific
set of types in FRUM.

equal for each node for classical probabilistic choice π. Thus, we have

∑
b/∈F

qπ(b, F ∪ b)︸ ︷︷ ︸
Inflow

=
∑
a∈F

qπ(a, F )︸ ︷︷ ︸
Outflow

In RUM, each preference ranking corresponds to a path starting from the grand set

and ending at the empty set. For example, {a, b, c} → {b, c} → {c} → ∅ (with path

qπ(a, {a, b, c}) → qπ(b, {b, c}) → qπ(c, {c})) represents the preference type u(a) > u(b) >

u(c).8 However, this attribution of types does not hold in FRUM. In fact, even the above

equality no longer holds in FRUM. We discuss below how to recover a similar equality

and provide a similar visual representation for types in FRUM.

Compared to RUM, FRUM has two sets of BM polynomials: One for framed al-

ternatives, q, and one for non-framed alternatives, y. To represent the auxiliary BM

polynomials y, we introduce new flows, which are represented by dashed red lines. These

are always “leakages” from the network: yρ(a, F ) denotes the leakage from F for the

8One can refer to Fiorini (2004) for a network analysis of RUM.
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alternative a /∈ F . For example, for the node {b, c}, there is an inflow from {a, b, c} but

a /∈ {b, c}. Hence, the leakage corresponds exactly to the alternative a /∈ {b, c}. In this

way, the outdegree of each node are the number of alternatives in the grand set. Interest-

ingly, if we also take into account all leakages, we recover the equality of inflow and total

outflow (outflow plus leakages).9 That is,

∑
b/∈F

qρ(b, F ∪ b)︸ ︷︷ ︸
Inflow

=
∑
a∈F

qρ(a, F )︸ ︷︷ ︸
Outflow

+
∑
a/∈F

yρ(a, F )︸ ︷︷ ︸
Leakages

Given this equality, each type in FRUM can be represented by a path in the new

Hasse diagram. Each type corresponds to a path starting from the grand set and end-

ing with a leakage. For example, q(a, {a, b, c}) → q(b, {b, c}) → q(c, {c}) → y(c, ∅) (the

blue path in Figure 2) represents the choice type who chooses a whenever a is framed,

chooses b whenever b is framed but a is not, and chooses c otherwise. In addition,

q(c, {a, b, c}) → y(c, {a, b}) (the green path in Figure 2) represents the choice type who

chooses c independent of frames.

Unlike RUM, each path represents multiple preferences, but they generate the same

choice function. For example, (u1+v1)(a) > (u1+v1)(b) > (u1+v1)(c) > u1(c) > u1(b) >

u1(a) is represented by the blue line described above (q(a, {a, b, c}) → q(b, {b, c}) →

q(c, {c}) → y(c, ∅)). Similarly, this path also represents the type (u2, v2), where (u2 +

v2)(a) > (u2+v2)(b) > (u2+v2)(c) > u2(c) > u2(a) > u2(b). There are several similarities

between these types: i) u1 + v1 and u2 + v2 induce the same ordering, ii) c is the worst

for u1 + v1 and u2 + v2, and iii) the lower counter sets of c with respect to u1 and u2

are the same. Notice that c(u1,v1) and c(u2,v2) are inherently indistinguishable even in the

deterministic model. Hence, they do not matter for predicting the actual choice. Our

identification result is based on choice types rather than utility types. We will return to

this in Section 3.4. In general, all utility types represented by the same path induce the

same choice behavior in this model. Consider a path q(a1, A0) → · · · → q(ak, Ak−1) →

y(b, Ak) where b ∈ X \ Ak, A0 = X, and Ai = Ai−1 \ {ai} for i = 1, ..., k. This path

captures the choice type c ∈ CFUM where c(Ak) = b and c(Ai−1) = ai for all i = 1, ..., k.10

9This result is stated as Lemma 1 in the Appendix, which is a generalization of Falmagne (1978)’s
Theorem 3. We believe this lemma could be of independent interest since it is model-free. We provide a
proof of it in the Appendix.

10While the description of the choice function is incomplete here, it points to a unique c in CFUM. One
can see this by applying the axiom IIFA. Moreover, the utility types of each choice function have been
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3.3 Behavioral Characterization

We now introduce behavioral postulates for FRUM. The first axiom is the non-

negativity of BM polynomials in our framework. This non-negativity is closely related to

the non-negativity of BM polynomials in the standard domain. In the standard domain,

the non-negativity of the BM polynomials means that items must be chosen marginally

more if there are fewer available items. RUM requires the non-negativity of the BM

polynomials, which is stated below.

Non-negativity of BM. For a ∈ F , q(a, F ) ≥ 0.

In RUM, this assumption is both necessary and sufficient. However, it is no longer

sufficient in this context. Here, not only must framed alternatives be chosen marginally

more if there are fewer framed products, but non-framed alternatives must also be chosen

marginally more. Therefore, we also require the non-negativity of y′s.

Non-negativity of Auxiliary BM. For a /∈ F , y(a, F ) ≥ 0.

We show that the non-negativity of BM and Auxiliary BM polynomials fully charac-

terize FRUM. As in RUM, we assume that D = 2X for the next theorem.

Theorem 2 (Characterization). Let D = 2X . Then, ρ has a FRUM representation if

and only if ρ satisfies Non-negativity of BM and Auxiliary BM.

This theorem provides a simple test for frame-dependent random utility using only

variations in framed sets. To illustrate usefulness of this theorem, we revisit the example

in the introduction. Let X = {a, b, c}. Remember that product a was selected 70% of

the time when nothing was framed, 45% when either product b or c was framed, and

only 10% when both b and c were framed. Note that the market share of non-framed a

decreases as the number of framed options increases. It seems like a case where utility

maximizers are more drawn to the framed options than the unframed option a. Hence,

it is tempting to conclude that this example can be rationalized by utility maximization

with a heterogeneous population. However, this intuition is misleading. To see this, we

first show that in this example, the non-negativity of the Auxiliary BM polynomials is

violated. We calculate

y(a, ∅) = ρ(a, ∅)− ρ(a, {b})− ρ(a, {c}) + ρ(a, {b, c}) = 0.7− 0.45− 0.45 + 0.1 < 0.

discussed in Proposition 1.
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Therefore, by Theorem 2, this data cannot be seen as the aggregate behavior of frame-

dependent utility maximizers. Even with limited data, the premise of frame-dependent

utility maximization can be falsified.

Furthermore, in the above example, we assume that X consists of three alternatives

and apply our theorem directly using y’s. One might expect that the theorem is silent

for the above data if X contains more alternatives. In that case, y(a, ∅) cannot be cal-

culated with the partial data (i.e., in the absence of other ρ(a, S \ a) for some S ⊆ X).

Nevertheless, the refutation still holds even in this case. We introduce new “interim”

Auxiliary BM polynomials, which can be calculated with the partial data. Formally, for

any a /∈ F ′ ⊇ F , we let

Y (a, F, F ′) :=
∑

B:F⊆B⊆F ′

(−1)|B\F |ρ(a,B)

Hence, by definition, y(a, F ) = Y (a, F,X \ {a}). It is routine to show that the non-

negativity of y’s is equivalent to the non-negativity of Y ’s. To illustrate this, assume

X = {a, b, c, d}. Then y(a, ∅) = Y (a, ∅, {b, c}) − Y (a, {d}, {b, c, d}) = Y (a, ∅, {b, c}) −

y(a, {d}) ≥ 0. Hence, Y (a, ∅, {b, c}) ≥ y(a, {d}) ≥ 0. Then a negative Y for some

a /∈ F ′ ⊇ F falsifies the model. Even if X contains more alternatives, we can still deduce

that

Y (a, ∅, {b, c}) = ρ(a, ∅)− ρ(a, {b})− ρ(a, {c}) + ρ(a, {b, c}) < 0

which again falsifies the hypothesis that the data is generated by frame-dependent utility

maximization.

These are not the only ways to falsify the model. Similarly, it can be violated by

the non-negativity of BM polynomials. To see this, we use the example above and let

X = {a, b, c}. Assume product a was selected 80% of the time when only a was framed,

65% when either product b or c was framed in addition to a, and only 40% when all

of the products were framed. Note that the market share of framed a increases as the

number of framed options decreases. Nevertheless, these data are not consistent with the

frame-dependent utility maximization. To see that

q(a, {a}) = ρ(a, {a})−ρ(a, {a, b})−ρ(a, {a, c})+ρ(a, {a, b, c}) = 0.8−0.65−0.65+0.4 < 0.
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Hence, the frame-dependent utility maximization paradigm requires the non-negativity

of BM and Auxiliary BM.11 One can analogously define a similar “interim” term for the

(regular) BM polynomials.

Finally, note that the sufficiency proof of Theorem 2 is constructive. We provide

an algorithm to compute a full distribution of types in the FRUM representation. The

algorithm is helpful in applications if one would like to have an estimate of the type

distribution. However, just as in the RUM in the standard choice domain, in general,

there is no unique distribution over types that can explain the choice data. We explore

this further in the next subsection.

3.4 Uniqueness and Identification for FRUM

In this section, we elaborate on to what extent the type distribution can be identi-

fied. We next illustrate how one can identify the preference distribution with a simple

parametric example involving two products a and b. Assume the following data.

ρ(λ,γ)(·, F ) {a, b} {a} {b} ∅
a λ 0.7 0.1 γ
b 1− λ 0.3 0.9 1− γ

Table 2. A Parametric Example

To answer whether this choice data has a FRUM representation, we first calculate the

corresponding qρ and yρ, which are depicted in the following Hasse diagram in Figure 3. If

λ and γ are between 0.1 and 0.7, all qρ and yρ are non-negative. By Theorem 2, this data

has a FRUM representation as long as λ, γ ∈ [0.1, 0.7]. While a characterization theorem

can inform us of the existence or non-existence of a particular representation, such a

theorem is not necessarily useful for finding such a representation. We now illustrate how

one recover the distribution of choice types.

Since our data has a FRUM representation for all λ, γ ∈ [0.1, 0.7], there exists µ

representing ρ(λ,γ). For illustration purposes, take λ = 0.4 and γ = 0.6. We first identify

11We would like to highlight that the non-negativity of BM in our setup differs from the non-negativity
of BM in RUM. To see this, assume a decision maker with π(a, {a, b}) = π(a, {a, c}) = 0.65 and
π(a, {a, b, c}) = 0.40. Note that these probabilities are the same as in the above example. Neverthe-
less, the non-negativity of BM in RUM is not violated. qπ(a, {a}) = 1 − π(a, {a, b}) − π(a, {a, c}) +
π(a, {a, b, c}) = 1 − 0.65 − 0.65 + 0.4 > 0. Hence, these data could be part of the utility maximization
paradigm.
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Figure 3. Hasse Diagram of ρ(λ,γ)

the possible paths and their corresponding weights. Note that each path corresponds to

a unique choice type.

The Hasse diagram shows that we must assign at least a flow of 0.1 to the path

q(a, {a, b}) → y(a, {b}) and a flow of 0.3 to the path q(b, {a, b}) → y(b, {a}). This means

that we identify two types: c1 and c2 always choose a and b, respectively, independently

of the frame. Hence, µ({c1}) = 0.1 and µ({c2}) = 0.3. Note that the path q(a, {a, b}) →

q(b, {b}) carries a flow of 0.3, and the path y(b, ∅) can carry at most a flow of 0.1. There-

fore, we must assign at least a flow of 0.2 to the path q(a, {a, b}) → q(b, {b}) → y(a, ∅).

This path corresponds to the type c3, where c3({a, b}) = c3({a}) = c3(∅) = a but

c3({b}) = b. We let µ({c3}) = 0.2 (there is a degree of freedom here). Since the path

y(a, ∅) must carry a total of 0.5, the path q(b, {a, b}) → q(a, {a}) → y(a, ∅) must carry

the residual flow of 0.3. This path corresponds to c4, where c4({a, b}) = c4({b}) = b but

c4({a}) = c4(∅) = a. Hence, we must set µ({c4}) = 0.3.

Moreover, since we exhausted the path q(a, {a}), the rest must flow from the path

q(a, {a, b}) → q(b, {b}) → y(b, ∅). This corresponds to c5, where c5({a, b}) = c5({a}) = a

but c5({b}) = c5(∅) = b. Hence, we must set µ({c5}) = 0.1. Finally, since we exhausted

all the flow, the last choice type, c6, must be assigned a weight of zero. This choice type

corresponds to the path q(b, {a, b}) → q(a, {a}) → y(b, ∅).

We should note that µ is not unique. Indeed, if we set µ′({c3}) = 0.25 or µ′′({c3}) = 0.3

(the highest possible flow), then we generate two additional representations: µ′ and µ′′,

respectively. The next table summarizes all three representations. Notice that there

is essentially one degree of freedom in the type distribution, which can be captured by
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µ({c3}) ∈ [0.2, 0.3].

Paths Types
F

µ µ′ µ′′
{a, b} {a} {b} ∅

q(a, {a, b}) → y(a, {b}) c1 a a a a 0.1 0.1 0.1
q(b, {a, b}) → y(b, {a}) c2 b b b b 0.3 0.3 0.3
q(a, {a, b}) → q(b, {b}) → y(a, ∅) c3 a a b a 0.2 0.25 0.3
q(b, {a, b}) → q(a, {a}) → y(a, ∅) c4 b a b a 0.3 0.25 0.2
q(a, {a, b}) → q(b, {b}) → y(b, ∅) c5 a a b b 0.1 0.05 0
q(b, {a, b}) → q(a, {a}) → y(b, ∅) c6 b a b b 0 0.05 0.1

Table 3. Three different FRUM representations for ρ(0.4,0.6)

We now generalize the above discussion to state our uniqueness result in the following

proposition.

Proposition 2 (Uniqueness and identification of FRUM). Let µ1 and µ2 be two FRUM

representations of the same choice data. Then for every F ⊆ X, b /∈ F and i = 1, 2,

1) yρ(b, F ) = µi({c ∈ CFUM| b = c(F ) and x = c({x}) for all x /∈ F}),

2) qρ(b, F ∪ {b}) = µi({c ∈ CFUM| b = c(F ∪ {b}) and x = c({x, b}) for all x /∈ F}).

Notice that the uniqueness result of the FRUM is closely related to the uniqueness

result of the standard RUM model. We first focus on y. The first condition says that

the choice types captured by yρ(b, F ) must choose b /∈ F when F is framed. Note that

since these choice types have a FUM representation, we know that it captures all the

utility types where u(b) is greater than u(x) for all x ∈ X \ {b} and (u + v)(z) for all

z ∈ F . Moreover, the choice types captured by yρ(b, F ) also choose x whenever x is

framed. Therefore, these types also assign a higher u+v value to all alternatives in X \F

than u(b).

The interpretation for qρ(b, F ∪ {b}) is analogous. First, choice types captured by

qρ(b, F ∪ {b}) must choose b when F ∪ {b} is framed, representing all the utility types

where (u + v)(b) is greater than u(x) for all x ∈ X and (u + v)(z) for all z ∈ F . Also,

they choose x /∈ F whenever {x, b} is framed, so the underlying utility types also assign

a higher u+ v value to all alternatives in X \ (F ∪ {x}) than (u+ v)(b).

As we mentioned before, in RUM, it has been known that the distribution over choice

types cannot, in general, be uniquely recovered from stochastic choice data (Falmagne,
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1978; Fishburn, 1998). Recently emerging literature provides remedies for the non-

uniqueness of RUM (Caradonna and Turansick, 2024; Cattaneo et al., 2024; Filiz-Ozbay

and Masatlioglu, 2023; Gul and Pesendorfer, 2006; Honda, 2021; Luce, 1959; Suleymanov,

2024; Turansick, 2022; Yang and Kopylov, 2023).

In RUM framework, Turansick (2022) first provides necessary and sufficient conditions

on the Block–Marschak polynomials, which guarantee that a random choice rule has a

unique RUM representation. Since our model is distinct from RUM, those conditions are

not useful in our setup. Having said that Caradonna and Turansick (2024) recently gen-

eralizes the result of Turansick (2022) which covers our setup. Hence, one can apply their

result in our framework to provide the necessary and sufficient conditions for uniqueness

in FRUM.

Since Suleymanov (2024) achieves uniqueness without sacrificing the explanatory power

of RUM, we adopt his approach to attain unique recovery for FRUM. Suleymanov (2024)

considers a particular representation of RUM, namely branch-independent RUM, that

enjoys a uniqueness property in identification while maintaining the same explanatory

power as RUM. The core idea is to apply the construction of Falmagne (1978) in re-

covering the preference types. Note that our proof indeed provides a specific construc-

tion of preference types that parallels that of Falmagne (1978). Therefore, one can ap-

ply a similar idea in our setting. However, there is an important distinction. Recall

that in RUM, each path in the Hesse Diagram corresponds to a unique preference type,

where Falmagne (1978)’s construction uniquely assigns each preference a weight accord-

ing to the path. Nevertheless, in FRUM, each path can correspond to multiple utility

types. Therefore, we only consider the choice type each path represents. Consider a path

q(a1, A0) → · · · → q(ak, Ak−1) → y(b, Ak) where b ∈ X \Ak, A0 = X, and Ai = Ai−1\{ai}

for i = 1, . . . , k. It captures the choice type c ∈ CFUM where c(Ak) = b and c(Ai−1) = ai

for all i = 1, . . . , k. The corresponding weight is

k∏
i=1

q(ai, Ai−1)

q(Ai−1, Ai−1) + y(X \ Ai−1, Ai−1)
· y(b, Ak)

q(Ak, Ak) + y(X \ Ak, Ak)
,

where q(S,R) =
∑

x∈S q(x,R) if S ̸= ∅ and q(∅, R) = 0.12 An analogous definition is ap-

plied to y. As an illustration, we revisit the example in Table 2. If we apply the formula to

12In the proof, we provide its recursive construction, which is equivalent to this formula.
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the path q(a, {a, b}) → q(b, {b}) → y(a, ∅), we have q(a,{a,b})
q({a,b},{a,b})

q(b,{b})
q(b,{b})+y(a,{b})

y(a,∅)
y(a,∅)+y(b,∅) =

0.25. This corresponds to the choice type c({a, b}) = c({a}) = c(∅) = a and c({b}) = b,

where the choice c({a}) is implied by c({a, b}) since c ∈ CFUM. Note that this choice type

is c3 as shown in Table 3, and the weight equals exactly to µ′({c3}). Therefore, µ′ is the

unique branch-independent representation of the choice data.

4 Parametric Probabilistic Choice

We now study the idea of frame-dependent utility with probabilistic data based on

the parametric Luce model. All the information about the models’ predictions can be

summarized by a finite set of parameters depending only on the alternatives. As is typi-

cally the case with parametric models, our parametric models offer three advantages over

the non-parametric versions we study in the next section. First, our parametric model is

ready to use in applications because of their analytic and computational tractability. Sec-

ond, the model possesses strong uniqueness properties. Third, it has sharp identification

results for designing policies.

We make the following positivity assumption throughout this section to foster a com-

parison between the two channels in the parametric models. Notice that this positivity

property, as argued by McFadden (1973), cannot be refuted based on any finite data set.

Assumption 1. For every x and F , ρ(x, F ) > 0.

Under frame-dependent utility, the valuation of the framed item is calculated by u+v.

In terms of the Luce model, we assume that for each available alternative x, there are

two alternative-specific parameters u(x) > 0 and v(x) ≥ 0. Like the Luce model, u

represents the crude measure of utility value without any framing. On the other hand, v(x)

captures the boost when alternative x is framed. We sometimes use (u, v) as the primitive

of the model for convenience. For notational simplicity, we write f(A) as shorthand

for
∑

x∈A f(x) for any function f . The DM makes choices based on the utility value.

Therefore, the choice probability of a framed alternative equals its weight (u + v)(x)

divided by the total weight in the choice set. The choice probability of a non-framed

alternative is equal to its weight u(x) divided by the total weight in the choice set. We

summarize this into the following definition.
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Definition 3. A choice rule ρ has a F-Luce representation if there exist functions u :

X → R++ and v : X → R+ such that for x ∈ X,

ρ(x, F ) =


u(x) + v(x)

u(X) + v(F )
if x ∈ F

u(x)

u(X) + v(F )
otherwise

(F-Luce)

for all F ∈ D.

Figure 4 illustrates both the similarity and the added richness introduced when moving

from the classical Luce model to the F-Luce model. In the left panel, which corresponds

to the standard Luce model, there are three alternatives and only four non-trivial choice

problems: the grand set and three binary choice problems. Here, we slightly abuse no-

tation. For example, π(xy) captures the probability of choosing between x and y only,

assigning zero probability to z since z is not available. In this setting, the structure is

relatively simple, and the model essentially reports how the ratios of choice probabilities

among the available alternatives remain independent of the presence or absence of any

other non-available alternative. This is reflected by π(xy) being a projection of π(X) onto

the line xy.

x y

z

π(xy)

π(yz)
π(xz)

π(X)

ρ(x)x y

z

ρ(∅)

ρ(x)
ρ(y)

ρ(z)

ρ(xy)

ρ(yz)
ρ(xz)

ρ(X)

Figure 4. Luce Model versus F-Luce Model

In the right panel of Figure 4, we illustrate an F-Luce model with three alternatives.

There are eight non-trivial observations corresponding to each frame. Here, framing an

alternative can boost its choice probability relative to others. Unlike the classical Luce

model, ρ(xy) assigns a positive choice probability to z even though it is not framed,
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which is placed strictly inside the probability simplex. Despite these differences, certain

regularities persist across the two models. For instance, the data for {x, y} andX lie on the

same line, indicating that the relative choice probability between x and y remains constant

as long as both are framed. Thus, while the F-Luce model introduces an additional layer

of complexity through framing effects, it still preserves the fundamental property of the

original Luce model. Moreover, the relative choice probability between x and y stays the

same whether z is framed or not. For example, when neither x nor y is framed, the ratio

stays constant, indicated by the fact that ρ(∅) and ρ(z) are on the same line. Furthermore,

when x is framed but y is not, the ratio also stays constant, since ρ(xz) and ρ(x) are on

the same line. We will discuss more of the general principles behind F-Luce in the next

section.

There are several interesting special cases of the model. All these special cases are

one-parameter extensions of the original Luce model capturing the framing effects. These

examples illustrate the richness of the F-Luce model.

First, we examine the situation that the impact of framing remains constant across

alternatives. Here, while the underlying utility u varies, the framing effect adds a fixed

gain v̄ to the utility across all alternatives. In the absence of framing, the choice probabil-

ities, ρ(·, ∅), directly reflect the underlying preferences among alternatives. Introducing

framing, however, alters these probabilities. Framing a specific alternative increases its

choice probability, but framing all alternatives uniformly diminishes the distinctions be-

tween them. Consequently, the choice probabilities, ρ(·, X), converge towards a convex

combination of the uniform distribution and ρ(·, ∅). In an extreme scenario where v̄ = 0,

framing has no effect (ρ(x, F ) is equal to ρ(x, ∅) for all x and for all F ). As v̄ increases,

ρ(·, X) approaches the uniform distribution, further reducing the differentiation between

alternatives. This scenario captures environments in which framing induces a consistent

effect across all products.

Second, we imagine a case where the underlying utility u is constant across alterna-

tives, and the only difference comes from the boost in utility v. The model is represented

by (ū, v), where ū is a constant. In this case, there is no distinction between alternatives

initially. Hence the distribution of choices is uniform if there is no frame. The framing

effect breaks this uniformity in favor of framed alternatives. ρ(·, X) reflects the differential

effect of framing across alternatives. This special case captures environments where cus-
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tomers either are indifferent between alternatives or have no information about products.

Framing eliminates indifference or provides additional information.

Finally, we explore scenarios where the framing effect is proportional to the underlying

utility. In this setting, alternatives with higher utility receive larger boosts from framing.

For example, promoting best-sellers amplifies their sales even further. The model for this

case is represented as (u, λu), where λ ≥ 0 quantifies the framing effect. For example, it

could be a measure of the effectiveness of recommendations. If λ is small, ρ(x, F ) is in

close proximity to ρ(x, ∅) for all x and for all F , indicating a minimal impact of framing.

Conversely, when λ is large, framing significantly increases the choice probabilities of

each alternative relative to the no-framing scenario. Interestingly, framing all alternatives

simultaneously has no impact on their relative choice probabilities, resulting in ρ(x, ∅) =

ρ(x,X) for all x. All three cases are illustrated in Figure 5.

x y

z

ρ(∅)
ρ(x) ρ(y)

ρ(z)

ρ(xy)

ρ(yz)ρ(xz)

ρ(X)
⋆ ⋆

x y

z

ρ(∅)

ρ(x)
ρ(y)

ρ(z)

ρ(xy)

ρ(yz)
ρ(xz)

ρ(X)

x y

z

ρ(∅)

ρ(x) ρ(y)

ρ(z)

ρ(xy)

ρ(yz)ρ(xz)

ρ(X)

⋆

Figure 5. Special Cases: The left figure illustrates F-Luce for (u, v̄): variable u and constant
v̄. The middle figure demonstrates F-Luce for (ū, v): Constant u and variable v̄. Finally, the
figure on the right exhibits F-Luce for (u, λu). In all three figures, ⋆ indicates the uniform choice
probabilities.

4.1 Behavioral Characterizations for F-Luce

In this section, we discuss the behavioral implications of the F-Luce model. These

behavioral postulates will allow us to test the model and characterize the empirical content

of F-Luce. Since we extend the classical Luce model, as anticipated, some version of Luce’s

IIA appears in our characterization. Recall that Luce’s IIA says the odds of choosing one

alternative over another do not depend on the feasible set.

Luce-IIA. For x, y /∈ F ∩ F ′,
ρ(x, F )

ρ(x, F ′)
=

ρ(y, F )

ρ(y, F ′)
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Since the F-Luce model is similar to the standard model except that the weights are

marked up by a utility v(x) if it is framed, Luce-IIA is a necessary condition. However, it

is not sufficient. The condition is silent over the choice data for non-framed alternatives.

Our model also satisfies the same condition for non-framed alternatives. However, it is

still not sufficient, since it does not connect the choice data between framed and non-

framed alternatives. The model also requires the same condition between framed and

non-framed alternatives. Overall, the Luce-IIA condition must hold as long as x and y do

not change their status across F and F ′. The following axiom imposes that requirement.

Strong Luce-IIA. For x, y /∈ F∆F ′,

ρ(x, F )

ρ(x, F ′)
=

ρ(y, F )

ρ(y, F ′)

where ∆ is the symmetric difference operator.

One might suspect that this axiom alone is sufficient for F-Luce. It turns out that

we need an additional behavioral postulate. Note that our model assumes framing has a

negative impact on non-framed alternatives. Any non-framed item is chosen weakly more

when the set of framed items gets smaller. We call this property F-Regularity.

F-Regularity. For x /∈ F , ρ(x, F ) ≤ ρ(x, F \ y).

Notice that this axiom is trivially satisfied in the standard Luce model since both

sides of the inequality are equal to zero. With this axiom, we are able to state the

characterization result.

Theorem 3. Let |X|≥ 3 and D include all frames with |F |≤ 2. Then, ρ has an F-Luce

representation if and only if ρ satisfies Strong Luce-IIA and F-Regularity.

Theorem 3 works under a very mild data requirement: the size of the frame is less

than or equal to 2. One caveat is that Theorem 3 requires that there are at least three

available alternatives. The reason is that Strong Luce-IIA puts no restriction on choice

data if there are only two available alternatives. One can define another property, e.g., for

x, y ∈ F , ρ(x,F )
ρ(y,F )

ρ(x,F\{x,y})
ρ(y,F\{x,y}) =

ρ(x,F\y)
ρ(y,F\y)

ρ(x,F\x)
ρ(y,F\x) . One can show that this property, along with

Strong Luce-IIA and F-Regularity, are the necessary and sufficient conditions for F-Luce

with |X|≥ 2.
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We finish this section by establishing the relationships between F-Luce and FRUM.

It is a well-known fact that the Luce model is a special case of the random utility model.

In the frame environment, one might wonder whether F-Luce belongs to FRUM. It turns

out that it does, which we state in the following (see also Figure 6).

Remark 1. Every choice rule ρ with an F-Luce representation has an FRUM represen-

tation.

x y

z

ρ(x)

ρ(x)
ρ(y)

ρ(z)

ρ(xy)

ρ(yz)
ρ(xz)

ρ(∅)

ρ(X)

Figure 6. F-Luce belongs to FRUM: The figure illustrates all possible choices for F = ∅
and F = X for given choices for binary and singleton frames consistent with an F-Luce. Note
that ρ(·, X) for F-Luce lies in the red irregular hexagon of F-RUM. Similarly, ρ(·, ∅) for F-Luce
belongs the blue triangle of F-RUM. This illustrates that F-Luce is a part of FRUM.

Also, if one applies the branch-independent construction to the choice data generated

by F-Luce, one can also get a unique branch-independent FRUM representation of F-Luce.

4.2 Uniqueness and Identification for F-Luce

In this section, we discuss the identification of the model. To achieve this, we first

establish that the parameters are unique up to a scaling factor.

Proposition 3 (Uniqueness of F-Luce). Let (u1, v1) and (u2, v2) be two F-Luce repre-

sentations of the same choice data. Then u1 = αu2 and v1 = αv2 for some α > 0.

We now turn to the recovery of the parameters. Notice that the framing effect for

an alternative can be “observed” only if the alternative is framed on some occasions.

Therefore, to retrieve this parameter, we must have data in which each alternative is

framed in some sets.
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Proposition 4 (Identification of F-Luce from Singletons). Suppose ρ is F-Luce. Let D

include all frames with |F |≤ 1, then we can fully identify the parameters of the model.

To see the applicability of this proposition, let X = {x, y, z}. Then, Proposition 4

requires that we only need four framed sets, i.e., D = {∅, {x}, {y}, {z}}. Moreover, to

illustrate how identification here works, in the proof, we first recover u from the no-frame

scenario, i.e., we let u(x) := ρ(x, ∅) for every x ∈ X. Moreover, we define

v(x) := ρ(x, {x}) 1− ρ(x, ∅)
1− ρ(x, {x})

− ρ(x, ∅)

Here, recovering v(x) requires the knowledge of a choice scenario where x is framed,

which is given by the choice probability under the framed set {x}. Moreover, since the

parameters are unique up to a scaling factor, we rescale ρ(x, {x}) according to the ratio

of the choice probability of other alternatives across the no-frame and framed x. Then,

we can fully identify the parameters.

Moreover, note that it is possible to obtain a similar result by replacing the singleton

frame data with some doubleton data where each alternative needs to be framed at least

once in one of the doubletons. This can potentially further reduce the data requirements

for identification. For example, suppose that X = {x, y, z, w} and D = {∅, {x, y}, {z, w}}.

Then, similarly to before, we let u(x) := ρ(x, ∅). For v’s, we utilize the doubleton data so

that v(x) := ρ(x, {x, y}) 1−ρ(x,∅)−ρ(y,∅)
1−ρ(x,{x,y})−ρ(y,{x,y}) − ρ(x, ∅), which shares a similar idea as the

construction of v above. In general, one can relax the condition: as long as the dataset

D contains sufficient frames that cover the framed status of each alternative, it will help

us to fully identify the parameter.

Proposition 5 (Identification of F-Luce). Suppose ρ is F-Luce. If ∅ ∈ D and there exists

F1, ..., Fn ∈ D where Fi ̸= X for all i and ∪n
i=1Fi = X, we can fully identify the parameters

of the model. In particular, we can let u(x) = ρ(x, ∅) and

v(x) = ρ(x, F )
1− ρ(F, ∅)
1− ρ(F, F )

− u(x)

for some F ∈ D such that x ∈ F .

Therefore, it demonstrates the broad applicability of the F-Luce model, where the

unique parameters can be identified using potentially limited choice data specifications.
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5 Final Remarks

In this article, we employ the revealed preference method to develop a frame-dependent

decision-making model that captures how an agent’s choices are influenced by framing. We

introduce a novel choice object and examine the implications of the utility maximization

paradigm in both deterministic and probabilistic settings. These models hold promise for

economic contexts where the effects of framing are of interest.

Future Directions: Several avenues exist for extending the present work. First,

while the utility maximization paradigm provides a robust “benchmark” for understand-

ing choice, it often fails to account for certain behavioral and psychological anomalies (e.g.,

limited consideration, status quo bias, behavioral search, satisficing, temptation, and so

on) observed in empirical evidence. To address this, our framework could be expanded to

accommodate these irregularities both in deterministic and probabilistic domains. Sec-

ond, a generalization of the F-Luce model warrants exploration. Although the classical

Luce model is widely recognized for its simplicity, it is often deemed “too restrictive.”

Consequently, alternative parametric models, such as Nested Logit, Dogit, Weighted Lin-

ear Model, and Probit model, have been proposed. Similarly, alternative formulations of

the F-Luce model could prove to be fruitful subjects of investigation.

Broader Applications: Our model is inspired by the concept of framing, which

concerns how the presentation of an option or product influences consumer perception.

However, the framework can be extended to scenarios where a product undergoes an ac-

tual enhancement due to its framing. For instance, one can apply it to capture consumer

impatience through the lens of shipping policies: x ∈ F can denote an option that benefits

from a same-day shipping policy, whereas x /∈ F indicates an option subject to standard

shipping. In this context, v(x) quantifies the utility increase from faster delivery. Simi-

larly, the framework can be applied to the study of discounts: x ∈ F signifies a product

offered at 15% off, while x /∈ F means the product is at its regular price, with v(x) captur-

ing the perceived utility gain from the discount, capturing any non-quasilinear price effect

on utility. While the framework is particularly well-suited for addressing framing-related

issues, its versatility suggests broader applicability across various domains. By offering

insights into diverse economic phenomena, it opens up new possibilities for research and

analysis.
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6 Appendix

In this Appendix, we will provide proofs of the results provided in the main text.
Moreover, in the proof, for ease of illustration, we focus on the ordinal version of the
model . In particular, we translate u and v into a preference ordering (i.e., a linear order)
≻ on X ∪X∗, where X∗ contains typical element x∗ which represents the framed version
of x. Since v ≥ 0, for each alternative x, it must be that x∗ ≻ x.

Definition 4. A deterministic choice rule c has a frame-dependent preference represen-
tation on D if there exists a preference ≻ on X ∪X∗ such that

c(R) = {x ∈ X| either x ∈ F and x∗ ≻ σ for every σ ∈ F ∗ ∪ F c \ x∗,

or x /∈ F and x ≻ σ for every σ ∈ F ∗ ∪ F c \ x}

for all R ∈ D.

Note that each ≻ over X ∪ X∗ can be mapped into a pair of utility function (u, v),
and vice versa. To give an example, suppose we have x∗ ≻ x ≻ y∗ ≻ y. Then, any (u, v)
with (u+ v)(x) > u(x) > (u+ v)(y) > u(y) will produce the same choice function.

Proof of Theorem 1

Proof. We would prove the theorem using the ordinal version of the model as discussed in
the beginning of the Appendix. We use σ as an arbitrary element of X ∪X∗. We define
a binary relation P over X ∪X∗. In particular, we let

(x∗, y∗) ∈ P if c(F ) = x and x, y ∈ F

(x, y∗) ∈ P if c(F ) = x and x /∈ F, y ∈ F

(x∗, y) ∈ P if c(F ) = x and x ∈ F, y /∈ F

(x, y) ∈ P if c(F ) = x and x, y /∈ F

Claim 1. P is asymmetric.

Proof. For two distinct σ1 and σ2, if (σ1, σ2) ∈ P then (σ2, σ1) /∈ P . Assume not, there
exists F1 and F2 such that x = c(F1) and y = c(F2). There are four cases depending on
whether x or y is framed. If x is framed, then σ1 = x∗, x otherwise. Similarly, σ2 is y if
it is not framed, y∗ otherwise.

First we assume that x, y ∈ F1∩F2, then by IIFA(1), we must have x = c({x, y}) = y,
a contradiction. Now assume x ∈ F1∩F2 and y /∈ F1∪F2, then IIFA(1) implies x = c({x})
whereas IIFA(2) implies y = c({x}), a contradiction. The third case where x /∈ F1 ∪ F2

and y ∈ F1 ∩ F2 is almost identical to the second case. Finally, assume x, y /∈ F1 ∪ F2.
Then applying IIFA(2) twice yields x = c(∅) = y, a contradiction. Therefore, P is
asymmetric. ■

Let a be c(∅). Given the definition P , we reveal that a is preferred to any alternative
in X \ a. Moreover, we cannot reveal the relative ranking of these alternatives in X \ a.
Formally, for x, y ̸= a, aPx and aPy then (x, y) /∈ P or (y, x) /∈ P . Notice that a might
be revealed to be better than alternatives in X∗. Especially, if a = c(F ), then aPy∗ for
all y ∈ F . The same intuition applies to these alternatives too. Hence, P is incomplete
for the lower contour set of a.
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On the other hand, P is complete in the upper contour set of a. To show this, assume
x∗Pa and y∗Pa for x, y ̸= a. In other words, there exist F ∋ x and F ′ ∋ y such that
x = c(F ) and y = c(F ′) where a /∈ F ∪ F ′. If x ∈ F ′ or y ∈ F , we would reveal
y∗Px∗ or x∗Py∗, respectively. Assume not. Then consider {x, y} as the framed set. First,
c({x, y}) ∈ {x, y}. If not, a = c({x}) by IIFA(2). Then by IIFA(1), x cannot be chosen
from c(F ). Hence, either y∗Px∗ or x∗Py∗, P is complete for the upper contour set of a.

Claim 2. If x∗Py∗ and x∗ ̸= a then x∗Pa.

Proof. x∗Py∗ implies that there exists F such that x, y ∈ F and x = c(F ). Since {x} ⊆ F ,
IIFA(1) yields that c({x}) = x implies x∗Pa. ■

Note that our definition of P does not relate a and a∗ since it requires two distinct
alternatives. However, it is possible that we can conclude that a∗Pa. To see this, assume
a = c(F ) where a, x ∈ F and x = c(F ′) where a /∈ F ′. The former implies a∗Px∗ and the
former yields x∗Pa. Hence we infer that a is ranked strictly higher when framed.

Claim 3. P is transitive in the strict upper contour set set of a.

Proof. Assume that x∗Py∗Pz∗ for three distinct x, y, and z. There exists F and F ′ such
that (i) x = c(F ) and y = c(F ′), and ii) {x, y} ⊆ F and {y, z} ⊆ F ′. IIFA(1) implies
that c({x, y}) = x and c({y, z}) = y. Then we consider c({x, y, z}). We must have
c({x, y, z}) ∈ {x, y, z} by IIFA(2). It cannot be z since IIFA(1) implies z = c({y, z}). It
cannot be y since IIFA(1) implies y = c({x, y}) which is a contradiction. Hence, we have
x = c({x, y, z}), which gives x∗Pz∗. ■

Take any completion of the transitive closure of P such that x∗Px for x and call it
≻. Note that the transitive closure would immediately imply x∗Px if there exists F ̸= ∅
such that c(F ) = x by using Claim 2 and the definition of P by the data c(∅) = a. For x
that is never chosen, x∗Px is trivial.

It is routine to show that the representation holds by choosing u and v appropriately.
Note that v ≥ 0 by the fact of x∗ ≻ x. ■

Proof of Proposition 1

Proof. Suppose (u1, v1) and (u2, v2) represent the same choice rule. For i), note that it
is immediate that argmaxx∈X u1(x) = c(∅) = argmaxx∈X u2(x). We call it a. For ii),
suppose not, there exists b such that u1(a) > u1(b) + v1(b) and u2(b) + v2(b) > u2(a).
Then, we know that c(u1,v1)({b}) = a ̸= b = c(u2,v2)({b}). Contradiction arises. For iii),
suppose not, there exists x, y ∈ X such that u1(x) + v1(x) > u1(y) + v1(y) > u1(a)
but u2(y) + v2(y) > u2(x) + v2(x) > u2(a). Then, we have c(u1,v1)({x, y}) = x ̸= y =
c(u2,v2)({x, y}). Contradiction arises. ■

Proof of Lemma 1

To prove Theorem 5, we need first to prove the following Lemma.
Lemma 1. For F ⊆ X and choice rule ρ,∑

a∈F

qρ(a, F ) +
∑
a/∈F

yρ(a, F ) =
∑
b/∈F

qρ(b, F ∪ b)
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Proof. We prove by strong induction by “stepping down.” For F = X \ {x}, we have
RHS = q(x,X) = ρ(x,X). Then,

LHS =
∑

a∈X\{x}

q(a,X \ {x}) +
∑

a/∈X\{x}

y(a,X \ {x})

=
∑

a∈X\{x}

q(a,X \ {x}) + ρ(x,X \ {x})

=
∑

a∈X\{x}

[
ρ(a,X \ {x})− ρ(a,X)

]
+ ρ(x,X \ {x})

=
∑
a∈X

ρ(a,X \ {x})−
∑

a∈X\{x}

ρ(a,X)

= 1−
∑

a∈X\{x}

ρ(a,X) = ρ(x,X)

Hence, LHS = RHS. The first step is proven. Suppose that equality holds for size of
k + 1, k + 2, ...N − 1. Let |F |= k,

LHS− RHS =
∑
a∈F

q(a, F ) +
∑
a/∈F

y(a, F )−
∑
b/∈F

q(b, F ∪ b)

=
∑
a∈F

(
ρ(a, F )−

∑
B⊃F

q(a,B)

)
+
∑
a/∈F

(
ρ(a, F )−

∑
a/∈B⊃F

y(a,B)

)
−
∑
b/∈F

q(b, F ∪ b)

=
∑
a∈X

ρ(a, F )−
[∑

a∈F

∑
B⊃F

q(a,B) +
∑
a/∈F

∑
a/∈B⊃F

y(a,B) +
∑
b/∈F

q(b, F ∪ b)

]
Since

∑
a∈X

ρ(a, F ) = 1, it remains to show that the latter term in the above expression

equals 1. We denote DR(i) as the collection of supersets of F with i element. Hence, we
can rewrite∑

a∈F

∑
B⊃F

q(a,B) +
∑
a/∈F

∑
a/∈B⊃F

y(a,B) +
∑
b/∈F

q(b, F ∪ b)

=
N∑

i=|F |+1

∑
B∈DR(i)

[∑
a∈F

q(a,B) +
∑
a/∈B

y(a,B)

]
+

∑
B∈DR(|F |+1)

∑
a/∈F

q(a,B) By rearrangement

=
N∑

i=|F |+2

∑
B∈DR(i)

[∑
a∈F

q(a,B) +
∑
a/∈B

y(a,B)

]
+

∑
B∈DR(|F |+1)

[∑
a∈B

q(a,B) +
∑
a/∈B

y(a,B)

]
By taking i = |F |+1 from the 1st term and summing it to the second term

=
N∑

i=|F |+2

∑
B∈DR(i)

[∑
a∈F

q(a,B) +
∑
a/∈B

y(a,B)

]
+

∑
B∈DR(|F |+1)

∑
a/∈B

q(a,B ∪ a)

By induction hypothesis

=
N∑

i=|F |+2

∑
B∈DR(i)

[∑
a∈F

q(a,B) +
∑
a/∈B

y(a,B)

]
+

∑
B∈DR(|F |+2)

∑
a/∈F

q(a,B) By rearrangement

=...(repetitively applying induction hypothesis)
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=
N∑

i=N

∑
B∈DR(i)

[∑
a∈F

q(a,B) +
∑
a/∈B

y(a,B)

]
+

∑
B∈DR(|N |)

∑
a/∈F

q(a,B) =
∑
a∈X

q(a,X) =
∑
a∈X

ρ(a,X) = 1

where the second-to-last equality is given by the definition of q. Hence, it is proven. ■

Proof of Theorem 2

Proof. In this proof, we study the representation through the preference types, so that it
connects better with the proof in Theorem 1 and displays the interchangeability of the
primitives. Therefore, we consider a distribution, µ, over preference preference types over
X ∪X∗.

For the necessity proof, we suppose the data follows the model. We introduce the
following notation, for b ∈ X and A ⊆ X \ b,

My(b, A) := µ
(
{≻ |(X \ b) ∪ A∗ = L≻(b)}

)
Mq(b, A ∪ b) := µ

(
{≻ |X ∪ A∗ = L≻(b

∗)}
)

where L≻(a) is the strict lower contour set of a according to ≻.

Claim 4. For b ∈ X and A ⊆ X \ b,
i) My(b, A) = y(b, A),
ii) Mq(b, A) = q(b, A ∪ b)

Proof. We prove by strong induction by “stepping down.” For A = X \ {x}, we have,

y(x,X \ {x}) = ρ(x,X \ {x})

= µ
(
{≻ |(X \ {x}) ∪ (X \ {x})∗ = L≻(x)}

)
= My(x,X \ {x})

So, i) is true for size of A equals to |X|−1. Suppose i) is true for size of k+1, k+2,...,|N |−1.
Let |A|= k,

y(x,A) = ρ(x,A)−
∑

x/∈B⊃A

y(x,B)

=
∑

x/∈B⊇A

My(x,B)−
∑

x/∈B⊃A

My(x,B)

= My(x,A)

where the second-to-last equality is given by Definition and induction hypothesis. Hence,
the proof is complete for i). For ii), we prove again by strong induction by “stepping
down.” For A = X \ {x}, we have

q(x,X) = ρ(x,X)

= µ
(
{≻ |X ∪ (X \ {x})∗ = L≻(x)}

)
= Mq(x,X \ {x})
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So, ii) is true for size of A equals to |X|−1. Suppose ii) is true for size of k + 1, k +
2,...,|N |−1. Let |A|= k.

q(x,A) = ρ(x,A)−
∑

x/∈B⊃A

q(x,B)

=
∑

x/∈B⊇A

Mq(x,B)−
∑

x/∈B⊃A

Mq(x,B)

= Mq(x,A)

where the second-to-last equality is given by Definition and induction hypothesis. Hence,
the proof is complete for ii). ■

From this claim, we immediately show Non-negativity of BM, since µ is by definition
positive.

For the sufficiency proof, for ease of notation, we introduce a new notation. We
provide a recursive construction here, which requires us to construct the preference ≻.
Therefore, we denote each ≻ with a sequence of alternatives (a string of text). For
example, x∗ ≻ x ≻ y∗ ≻ y will be simply denoted by x∗xy∗y. For any F ∗ ⊆ X∗, we write
ΠF ∗ for the set of |F ∗|! permutations on F , with typical element πF ∗ . We will note πF ∗σ
as the extended sequence for some σ ∈ X ∪ X∗. we first construct G(a∗) := q(a,X) for
all a∗ ∈ X∗. Then, we construct, recursively,

G(πF ∗σ) =


G(πF ∗)

y(z,X \ F )∑
π′
F∗∈ΠF∗ G(πF ∗)

if σ = z ∈ F

G(πF ∗)
q(z,X \ F )∑
π′
F∗∈ΠF∗ G(πF ∗)

if σ = z∗ ∈ (X \ F )∗

Note that G ≥ 0 by Non-negativity of BM. We then prove the following properties for
G.

Claim 5. For F ⊆ X, we have,
i)

∑
πF∗∈ΠF∗ G(πF ∗σ) = y(x,X \ F ) for σ = x ∈ F ,

ii)
∑

πF∗∈ΠF∗ G(πF ∗σ) = q(x,X \ F ) for σ = x∗ ∈ (X \ F )∗,
iii)

∑
πF∗∈ΠF∗ G(πF ∗) =

∑
x∈F q(x, x ∪ (X \ F )),

iv) G(πF ∗) =
∑

σ∈F∪(X\F )∗ G(πF ∗σ) for all πF ∗,

Proof. Note that i) and ii) are straight forward. For iii), we have

LHS =
∑

πF∗∈ΠF∗

G(πF ∗)

=
∑
z∈F

∑
π(F\z)∗∈Π(F\z)∗

G(π(F\z)∗z∗)

=
∑
z∈F

q(z, x ∪ (X \ F ))

= RHS (By (ii))
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For iv), we have

RHS =
∑

σ∈F∪(X\F )∗

G(πF ∗σ)

=
G(πF ∗)∑

π′
F∗∈ΠF∗ G(π′

F ∗)
(
∑
z∈F

y(z,X \ F ) +
∑

z∈X\F

q(z,X \ F ))

=
G(πF ∗)∑

π′
F∗∈ΠF∗ G(π′

F ∗)
(
∑
z∈F

q(z, z ∪ (X \ F )) (By Lemma 1)

= G(πF ∗) = LHS (By (iii))

■

We then define each individual weight. We will consider permutation on X ∪X∗. We
let π denote each permutation in X ∪X∗. Note that we only consider permutation where
x∗ comes before x. Then, we perform a “truncation” on π. Firstly, we truncate π up to
the first element in X that appears in the sequence. For example, for X = {x, y, z}, we
will truncate the following sequence in the following way.

x∗y∗x︸ ︷︷ ︸
πt

z∗zy

Here, since the utility type space of FRUM is huge and many types are inherently indis-
tinguishable from other, we mainly assign the weights on a group of types whose behaviors
are the same. Then, we allocate the weight evenly across the group. We define, for every
πF ∗ ∈ ΠF ∗ and x ∈ X, for every π such that πt = πF ∗x,

µ̂π := G(πF ∗x) ∗ 1

|{π : πt = πF ∗x}|
.

Firstly, note that µ̂ ≥ 0 due to the fact that G ≥ 0. Claim 5(iv) ensures that µ̂ is
additive. In the following, we introduce the following notation. Let Lπ(σ) be the lower

contour set of σ according to π. We define M̂y(b, A) := µ̂
(
{π|(X \ b) ∪ A∗ = Lπ(b)}

)
and M̂q(b, A∪ b) := µ̂

(
{π|X ∪A∗ = Lπ(b

∗)}
)
. Since the weights are constructed, we now

check for the choice data. For x /∈ F ,

ρ̂(x, F ) =
∑

x/∈B⊇F

M̂y(x,B) (by definition)

=
∑

x/∈B⊇F

∑
π(X\B)∗∈Π(X\B)∗

G(π(X\B)∗x) (by construction)

=
∑

x/∈B⊇F

y(x,B) (By Claim 5(i))

= ρ(x, F )

On the other hand, for x ∈ F ,

ρ̂(x, F ) =
∑
A⊇F

M̂q(x,A) (by definition)
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=
∑
A⊇F

∑
π(X\A)∗∈Π(X\A)∗

G(π(X\A)∗x) (by construction)

=
∑
A⊇F

q(x,A) (By Claim 5(ii))

= ρ(x, F )

Hence, the constructed weights explain the data. Since it explains the data, we have∑
π∈Π

µ̂π = 1. The sufficiency proof is complete. ■

Proof of Proposition 2

Proof. It is proven in Claim 4. To see this, using the primitive ≻, we defined before

Claim 4 that for a ∈ X and A ⊆ X \ a, My(b, A) := µ
(
{≻ |(X \ b) ∪ A∗ = L≻(b)}

)
and Mq(b, A ∪ b) := µ

(
{≻ |X ∪ A∗ = L≻(b

∗)}
)
and proved in Claim 4 that For a ∈ X

and A ⊆ X \ a, i) My(b, A) = y(b, A) and ii) Mq(b, A) = q(b, A ∪ b). Therefore, for
Proposition 2(i), we have yρ(b, F ) = My(b, F ) = µ({≻ |(X \ b) ∪ F ∗ = L≻(b)}). In
other words, it captures all the types ≻ where b is better than all alternatives in F ∗

(the framed version) and all alternatives in X \ b (the regular version), and is worse than
all alternatives in (X \ F )∗ (the framed version). Therefore, it gives yρ(b, F ) = µi({c ∈
CFUM| b = c(F ) and x = c({x}) for all x /∈ F}). Similar arguments can be made for
Proposition 2(ii) using Claim 4(ii). ■

Proof of Theorem 3

Proof. The necessity proof is straightforward. In the following, we will adopt three IIA
implied by Strong Luce-IIA. Namely, framed Luce-IIA, Non-framed Luce-IIA and Cross-
status Luce-IIA, which are discussed in the main text.

For the sufficiency, we will prove it with two different cases. The first case is that
|X|≥ 3. we let u(x) := ρ(x, ∅). We designate an anchoring element z0 such that for

every x ∈ X \ z0, we let l(x|F, z0) := ρ(x,F )
ρ(z0,F )

ρ(z0, ∅) for some F such that x ∈ F and

z0 /∈ F . Firstly, note that the denominator is greater than 0 by the assumption that
choice probability is positive.

Claim 6. For F ̸= X, y, z /∈ F and x ∈ F , l(x|{x}, z) = l(x|F, y).

Proof. To see this, let y /∈ F , by Non-framed Luce-IIA, we have ρ(y, {x}) = ρ(z,{x})
ρ(z,∅) ρ(y, ∅),

which we substitute into ρ(x,{x})
ρ(x,F )

= ρ(y,{x})
ρ(y,F )

(by Cross-status Luce-IIA). By simplifying, we

get l(x|F, z) := ρ(x,{x})
ρ(z,{x})ρ(z, ∅) =

ρ(x,F )
ρ(y,F )

ρ(y, ∅) := l(x|F, y). ■

Hence, the definition of l is independent of the anchoring element z0. We will write
l(x) to replace l(x|F, z0) for every x /∈ z0. Also, we can define l(z0) which is any other
arbitrary anchor.

Claim 7. 1) For x, y /∈ F , ρ(x,F )
ρ(y,F )

= u(x)
u(y)

. 2) For x, y ∈ F , ρ(x,F )
ρ(y,F )

= l(x)
l(y)

. 3) For x ∈ F and

y /∈ F , ρ(x,F )
ρ(y,F )

= l(x)
u(y)

.
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Proof. To see 1) holds, note that Non-framed Luce-IIA implies ρ(x,F )
ρ(y,F )

= ρ(x,∅)
ρ(y,∅) =

u(x)
u(y)

. To

see 2) holds, note that for F ̸= X and some z /∈ F , ρ(x,F )
ρ(y,F )

= ρ(x,F )
ρ(y,F )

ρ(z,∅)
ρ(z,∅)

ρ(z,F )
ρ(z,F )

= l(x)
l(y)

. For

F = X, we use framed Luce-IIA so that ρ(x,X)
ρ(y,X)

= ρ(x,{x,y})
ρ(y,{x,y}) = ρ(x,{x,y})

ρ(y,{x,y})
ρ(z,∅)
ρ(z,∅)

ρ(z,{x,y})
ρ(z,{x,y}) =

l(x)
l(y)

for some z /∈ {x, y}. To see 3) holds, ρ(x,F )
ρ(y,F )

= ρ(x,F )
ρ(y,F )

ρ(y,∅)
ρ(y,∅) =

l(x)
u(y)

. The proof is complete. ■

Lastly, for x ∈ F , taking summation over all choice ratio of every elements in X

with ρ(x, F ) being at the denominator, we have
∑

y∈X
ρ(y,F )
ρ(x,F )

=
∑

y∈F l(x)+
∑

y∈Fc u(x)

l(x)
⇐⇒

ρ(x, F ) = l(x)∑
y∈F l(x)+

∑
y∈Fc u(x)

. One can apply the same argument analogously to the case

that x /∈ F . Then, we define v(x) := l(x)− u(x). The representations hold if l(x) ≥ u(x)
for every x ∈ X. To see this, We check ρ(y, {x}) and ρ(y, ∅) for some y ̸= x. It is easy to

show that l(x) ≥ u(x) if and only if ρ(y, {x}) = u(y)∑
z∈X\x u(z)+l(x)

≥ u(y)∑
z∈X\x u(z)+u(x)

= ρ(y, ∅)
which is given by F-Regularity. Hence, the proof is complete. ■

Proof of Remark 1

Proof. It suffices to show that it satisfies Non-negativity of BM.We first state the following
fact, due to the well-known fact that any Luce is RUM.

Fact 1. Let ki ≥ 0 for i = 1, ..., N , and we denote N = {1, .., N} Then, for any K > 0,
we have

∑
A⊆N (−1)|A| 1

K+
∑

i∈A ki
≥ 0

We first consider y(x, F ). y(x, F ) =
∑

x/∈B⊇F (−1)|B\F |ρ(x,B) =
∑

x/∈B⊇F (−1)|B\F | u(x)
u(X)+v(B)

= u(x)
∑

x/∈B⊇F (−1)|B\F | 1
u(X)+v(F )+v(B\F )

= u(x)
∑

A⊆X\(F∪x)(−1)|A| 1
u(X)+v(F )+v(A)

. We

use the above fact by letting u(X) + v(F ) = K > 0 with v(x) ≥ 0. Then, it is immediate
that y(x, F ) ≥ 0. Analogously, one can also see that q(x, F ) ≥ 0. ■

Proof of Proposition 3

Proof. Suppose that (u1, v1) and (u2, v2) represent the same choice rule. Then, by defi-

nition, for every x ∈ X, u1(x)
u1(X)

= ρ(x, ∅) = u2(x)
u2(X)

. Therefore, we get u1(x) =
u1(X)
u2(X)

u2(x),

where u1(X)
u2(X)

> 0 and is independent of x. Also, for every x ∈ X, we have u1(z)
u1(X)+v1(x)

=

ρ(z, {x}) = u2(z)
u2(X)+v2(x)

. Hence, by putting u1 = αu2, we have αu2(z)
αu2(X)+v1(x)

= u2(z)
u2(X)+v2(x)

.

Then, we get v1(x) = αv2(x). ■

Proof of Proposition 4

Proof. To derive v(x), note that we have ρ(x, x) = v(x)
v(x)+u(X\x) . By putting in ρ(x,X \x) =

u(X \ x) and re-arrangement, one can get v(x) := ρ(x, {x}) 1−ρ(x,∅)
1−ρ(x,{x}) . To see that it

explains choice data. Note that v(x) is derived from ρ(x, x), it is necessarily true that
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(u, v) explains ρ(x, x). For y ̸= x, note that

ρ(y, x) =
ρ(y, ∅)

ρ(x, x) 1−ρ(x,∅)
1−ρ(x,x)

+ ρ(y, ∅) + ρ(X \ {x, y}, ∅)

=
ρ(y, ∅)
1−ρ(x,∅)
1−ρ(x,x)

= (ρ(y, x) + ρ(X \ {x, y}, x)) ρ(y, ∅)
ρ(y, ∅) + ρ(X \ {x, y}, ∅)

= (ρ(y, x) + ρ(X \ {x, y}, x)) ρ(y, x)

ρ(y, x) + ρ(X \ {x, y}, x)
= ρ(y, x)

where the second-to-last step is given by Strong Luce-IIA. ■

Proof of Proposition 5

Proof. The proof is analogous to the last proposition. ■
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